Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

Identifieur interne : 000131 ( Main/Exploration ); précédent : 000130; suivant : 000132

Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

Auteurs : Steven A. Kannenberg [États-Unis] ; Richard P. Phillips [États-Unis]

Source :

RBID : pubmed:27896478

Descripteurs français

English descriptors

Abstract

Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

DOI: 10.1007/s00442-016-3783-2
PubMed: 27896478


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Soil microbial communities buffer physiological responses to drought stress in three hardwood species.</title>
<author>
<name sortKey="Kannenberg, Steven A" sort="Kannenberg, Steven A" uniqKey="Kannenberg S" first="Steven A" last="Kannenberg">Steven A. Kannenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA. sakannen@indiana.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Bloomington, IN, 47403</wicri:regionArea>
<wicri:noRegion>47403</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Bloomington, IN, 47403</wicri:regionArea>
<wicri:noRegion>47403</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27896478</idno>
<idno type="pmid">27896478</idno>
<idno type="doi">10.1007/s00442-016-3783-2</idno>
<idno type="wicri:Area/Main/Corpus">000150</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000150</idno>
<idno type="wicri:Area/Main/Curation">000150</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000150</idno>
<idno type="wicri:Area/Main/Exploration">000150</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Soil microbial communities buffer physiological responses to drought stress in three hardwood species.</title>
<author>
<name sortKey="Kannenberg, Steven A" sort="Kannenberg, Steven A" uniqKey="Kannenberg S" first="Steven A" last="Kannenberg">Steven A. Kannenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA. sakannen@indiana.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Bloomington, IN, 47403</wicri:regionArea>
<wicri:noRegion>47403</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Indiana University, Bloomington, IN, 47403</wicri:regionArea>
<wicri:noRegion>47403</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Quercus (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Trees (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Quercus (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Plant Leaves</term>
<term>Quercus</term>
<term>Soil Microbiology</term>
<term>Stress, Physiological</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Microbiologie du sol</term>
<term>Quercus</term>
<term>Sol</term>
<term>Stress physiologique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27896478</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>183</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Soil microbial communities buffer physiological responses to drought stress in three hardwood species.</ArticleTitle>
<Pagination>
<MedlinePgn>631-641</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-016-3783-2</ELocationID>
<Abstract>
<AbstractText>Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kannenberg</LastName>
<ForeName>Steven A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA. sakannen@indiana.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Richard P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Indiana University, Bloomington, IN, 47403, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Drought stress</Keyword>
<Keyword MajorTopicYN="Y">Gas exchange</Keyword>
<Keyword MajorTopicYN="Y">Inoculation</Keyword>
<Keyword MajorTopicYN="Y">Isohydry</Keyword>
<Keyword MajorTopicYN="Y">Root-microbe interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27896478</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-016-3783-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-016-3783-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2015 Feb;205(3):1117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25385284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):505-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25756288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Nov;28(11):1693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Dec;184(4):950-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2009 Nov;23(22):3513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Jan;34(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2014 Nov;24(8):595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 29;6:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 Jan;25(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24831020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1051-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Mar;35(3):229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Apr;65(3):671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23250115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Jan;39(1):38-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26081870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jul;18(7):431-439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Feb;17(2):316-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):71-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21140277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2015 Nov;179(3):641-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26130023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Jan;27(1):11-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Jul;124(1):8-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(1):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24985503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jan;12(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(394):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Jul;100(7):1445-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23757444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Dec;17(12):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2014 Aug;20(8):2531-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24421179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Jun;35(6):585-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25877767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kannenberg, Steven A" sort="Kannenberg, Steven A" uniqKey="Kannenberg S" first="Steven A" last="Kannenberg">Steven A. Kannenberg</name>
</noRegion>
<name sortKey="Phillips, Richard P" sort="Phillips, Richard P" uniqKey="Phillips R" first="Richard P" last="Phillips">Richard P. Phillips</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000131 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000131 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27896478
   |texte=   Soil microbial communities buffer physiological responses to drought stress in three hardwood species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27896478" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020